高光谱遥感图像模糊c均值聚类算法的matlab实现
上传时间: 2015-10-29
上传用户:zwei41
高光谱遥感图像处理的入门级文章,MIT林肯实验室的文章,比较经典!
上传时间: 2015-12-28
上传用户:JasonC
由于遥感器的空间分辨力的限制以及自然界地物的复杂性,混合像元普遍存在于遥感图像中,为了提高遥感应用的精度,就必须解决混合像元的分解问题。而端元提取,则是光谱解混合的重要组成部分。然而,高光谱图像巨大的数据量和...
上传时间: 2013-06-07
上传用户:维子哥哥
车牌定位---VC++源代码程序 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2013-11-26
上传用户:懒龙1988
1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2014-01-08
上传用户:songrui
高光谱图像处理很经典的文章,随便
上传时间: 2013-12-31
上传用户:GavinNeko
高光谱图像建模分析的经典文章,大家多多学习。是认识高光谱机理 的基础!
上传时间: 2014-11-24
上传用户:上善若水
高光谱图像的顶点成分分析,在没有先验知识背景下,提取图像中的端元
上传时间: 2014-01-21
上传用户:1966640071
用分形算法对高光谱图像压缩的MATLAB程序
上传时间: 2013-12-30
上传用户:蠢蠢66
~{JGR 8vQ IzWwR5SC5D2V?bD#DbO5M3~} ~{3v?b~} ~{Hk?b~} ~{2iQ/5H9&D\~} ~{?IRTWw@)3d~} ~{TZ~}JDK1.4.2~{OBM(9}~}
上传时间: 2015-02-22
上传用户:ommshaggar